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SUMMARY 

We present the results of a calculation of the spin-lattice 
and spin-spin relaxation for dipolar solid when it is irradi- 
ated by the WAHUHA and MREV-8 pulse sequences. The spin-spin 
relaxation rate which is determined by the second-order dipo- 
lar interaction term of the average Hamiltonian depends on 
thermal motion of four atoms. It has been shown that frem the 
temperature dependence of this relaTation rate the degree of 
correlated atomic motion can be estimated. 

INTRODUCTION 

Since the development of multiple pulse NMR for high reso- 
lution in solids, considerable efferts have been made to stu- 
dy the spin-latticerelaxationin these experiments (HAEBERLEN 
and WAUGH, 1969, GRUNDER, 1974, VEGA and VAUGHAN, 1978). The 
essential features of this relaxation are similar to spin-la- 
ttice relaxation in the rotating frame (T1~-relaxation). Ho- 
wever, for the pulse rf irradiation, the initial magnetizati- 
on decays even in the rigid lattice case becouse of the spin- 
spin relaxation process, described by the high order terms of 
the average Hamiltonian (HAEBERLEN, 1976). In recent years, 
it has been demonstrated that here we have to deal with heat- 
ing of spin system by quanta h~n (Xl=2~/t~, t c- the cycle 
time of the rf sequence), accomplished by slmultaneous flip 
of two, three and more spins ("resonance processes.") (IVANOV 
et al.,1978). If we have a train of rf pulses all pointing in 
the same direction in the rotating frame (a pulsed version of 
the spin locking experiment) the average Hamiltonian H~ is 
not equal to zero. In this case we have obtained that resona- 
nce processes are not sensitive to slow thermal motions (ZOBOV 
and PONONARENKO, 1978). In this paper we analyse the line na- 
rrowing sequences with H~=O. Now the heating of spin system 
by resonance processes depends on thermal motions of the 
spins participated in the absorption of quanta h~In. Hence, 
it is possible, in principle, to study the degree of correlated 
motion of these spins. 

THEORETICAL 

The spin system in strong magnetic field kH~ we shall consi- 
der is irradiated by the WAHUHA sequence (see Figure I) with 
a resonance offset A~I/T 2. In the toggling frame of referen- 
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Fig. I: Four-pulse sequence WAHUHA~ 
ce (HAEBERLEN, 1976) the Hamiltonian of the system becomes 
time dependent. In order to simplify the description of this 
dependence, it is convenient to replace the 90~ along 
~x,+y axes of the rotating frame by the train of 120O-pulses 
alo~ the (111) and (TTT# directions of this frame, and to go 
into a frame (tilted frame) with the Z axis along the (111) 
direotion. Thus, in the tilted frame the Hamiltonian of the 
spin system under consideration is 

~ t ~ ~(t) ~Hd( ) + ~H~(t) �9 ~I z (I) 

where ~=A/3 I/2, Ha(t) is the time-dependent part of the res- 
onance offset Hamiltonian, 

= ~ I_exp(-if(t)2Z/3) ), (2) ~g(t) aJ/2 I/2 (l+exp{if (t) 2~/3} + 

Hd(t) is the secular dipolar interaction, 

~d(t) = Z V%xp[if(t)~ 2~/3~ , (3) 
6=!1,!2 

V~I=I/2{i,jE bij(t)IziI~ , V~2=I/2 i<jZ bij(t)I+iI+j._ _ 

The coefficients bij(t)=I/2W2~(1-3cos2@i~)/r~ are dependent 
on the lattice motion via r44 and @ij; pe~iodi~ function of 
time f(t) is shown on Fig. ~5. 
The equations of motion for Mo=~Z, M~=~X~T+M (where ~X~ My 
and M z are the magnetizations alon6~,Y and Z axes of tilted 
frame, respectively) were derived(ZOBOV and PONOMARENKO, 1979) 
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by projection operator method: 

dm~(t) 
=-ip~(t)- 

dt 

t 
I~q(t,t')e-iW(pt-qt')Mq(t')dt', (4) 

q~O,~1 0 
where 

~2q) (t,t,) = 

- ~ exp{i~(f(t)ff 
~,~' 

R(2n)tt t') = pq " , 

~q(t,t') = ~ R(2n)(t t') pq " , 

n=1 

+ f(t,)~,)}<[Bd(t)'I-D][Bd(t')'I0 > 

< i_plp> 

(5a) 

(5b) 

2~ 

B~(t) = Bd(t)~ + OJ12112~exp[i~O2%} . 

The line over RDo(t,t') means averaging over thermal motion. 
The fi?@$ term bf the expansion in small quantity (~/Tp)<<I 
(5), R~)(t),contains a fast oscillation with the perio~ 6~. 
It is %He leading term in the fast motion case (~ Tg, ~ 
is the time of thermal motions correlation). In th~ rigid l~- 
ttice and in the slow motion case (~c>>T2) the leading(term.re 
is one with n=3, in which the fast oscillations vanish 
sonance term"). The expression for this term was derived from 
(5c) by integration by parts and is (ZOBOV and PONOMARENKO, 
1979) 

R~q(t,t') =-~4/(18)2<[F(t),l_~[F(t'),lq~>/<I_pIp~ ~ (6) 

where 

"(t) IBm(t) BdCt), [Bd(t), (7) 

<I ~A> 
PA = E - "  , '  Ip , ~...>= Spl...~/Sp[1 ~ 

P <I_pip> 

Sdtl 
~ , . . . , ~ '  t t t '  

BG-2n_ 2 ( t 2n_ 2 ) ' (1-P)[B ~l(t 1),..,,(I-P) FB~(t'),I 7...]7 (50) ' h ,  ( i  . . . .  -q-J, 

< l_plp~ 

is the projection operator, 
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(at t=O, usinK the notation of HAEBERLEN, 1976 we have 
~zF(O)/18 = ~2) ). Using Eq.(5) and regrouping the operato- 
rs in F(t) as ~ollow 

Q+I (t)=3[V +I ,IV +~ ,v-l]] +3[V-2,~ +I ,V+2]] +3IV +~ ,[V-2,V+2]] , 

, 

Q+3(t)=QO(t)=0 , Q+4(t)=3[V+I,~+I,V+23] , 

we have 4 

P(t) = E Qm(t)exp{ imout} + C.C. . (8) 

m=1 

Now we must carry out the average over thermal motion. Assum- 
ing the usual exponential correlation function, correspondin4~ 
to a random Markoff process, we have 

bij(t)bij(t') =b 2 ij exp(-~t-t'I/~c] . (9) 

That is enough for calculation of R(~! However in ~(6) 

le there are products of six coefficien~B bij(t), for ex~ in 
the form of 

bij(t)bjk(t)bkl(t)bij(t')bjk(t']bkl(t') = gijkl(t,t') . 

To calculate ~ .... we will need to know how b~ transforms un- 
der thermal mo~ of atoms or molecules. Let-~s consider for 
simplicity a random Markoff process: thermal motion results in 
0umps of bit to b~5 so that bisb~5 =0, and the mean t~me bet- 
ween consecutive ~Dmps is Tc. Le~"us consider two limiting ca- 
ses : 

I). Completely uncorrelated motion, i.e. bij , bjk and bkl 
change quite independently�9 Then 

gijkl(t,t,) = "  .2 b 2 .2 oij jkOklexp[-3 ~t-t 't / To] (9a) 

2). Completely correlated motion. Then 

gijkl(t,t,) = .2 b 2 b 2 e " 'I . ~ jk kl xp[- It-t /'rc] (9b) 

Eqs. (9) have a simple structure: the therm~l motion results 
in appearance of exponent at "rigid" term b~jbSkb~l. Extend- 
ing this property on more complicated expresszons, we assume 
that 

<[Qm( t ),i_p][Q-m( t ),Ip]> /<I_pI?=-M(6P) (m)exp(-~-t'~/*Ck} ' (10) 
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where 

M~P)(m)=-<KQm, I 3[Q-m, Ip3>/<I_plp~ - - p  �9 

~k changes from ~c to Tc/3 depending on the extent of the 
correlated motion�9 

RESULTS AND DISCUSSION 

Using Eqs.(4)-(10), we obtain in the usual way 

d~(t) = -ip~Mp(t) - Mp(t)/Tp , (12) 
dt 

where I/T =I/TI + 1/T2.. The relaxation terms with the decay 
constants~T2D &~d T19 ~s obtained from the terms of Eq.(4) 
containing R)pq and -R~ j, respectively�9 Thus, 

1/T2 p = ~ M~P)(m) ~k T 4 
m I + (~m~k)2 ~2 ~ (13) 

1/Tlp = 1/3M2qZ2/~ c , M2= 3I ( I+1)  ~ b 2 i j  " (14) 
J 

Now suppose the resonance offset and therefore,corresponding 
magnetic field are equal to zero. In this case the projections 
of magnetizations on the toggling frame axes relax independen- 
tly (ZOBOV, 1979). Therefore, it is convenient to return to 
the old untilted frame. Following the outlined procedure of 
calculation, we obtained 

~4~.(~) T ~18 2 l /T2s = ~ ~ 6  k" ' (15) 

where S = x,y and z, 

- Hd,LHd, �9 , (16) 

HSd = ~ bij(31silsj - ~i~j) 
i(j 

The relaxation terms of second order have been considered in 
(VEGA and VAUGHAN, 1978). The authors have obtained at %c>>~ 

1/Tlx= 1/Tlz= 2/9 M2~2 /~c  , 1/Tly= 5/9 ~ 2 T 2 / ~ c  �9 (17) 

Thus, on resonance the x,y and z directions of the toggling 
frame are "principal axes" of relaxation (VEGA and VAUGHAN, 
1978). 
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Off resonance there is the effective field Heff=~/~ in the 
toggling frame. This field mixes the x,y and z magnetizations 
during the relaxation process and, for a sufficiently large 
resonance offset ( & T2e>~1), the parallel and perpendicular 
to the effective field magnetizations relax independently 
with time constants To, T+I. From Eq.(13) we see that T O and 
T+I have the same orders ~f magnitude and the similar depend- 
e~ces of parameters. Since ~+1 decay and oscillate but M o de- 
cays only, T• gives a line Width of a multiple-pulse line- 
narrowing experiment. In real samples the decay of ~o results 
from spin-lattice interaction, whereas the decay of the osci- 
llations (~I) does not necassarily. For example, the chemic- 
al shift dispersion makes contribution to rate of this decay. 
Therefore T o may be convenient to study of thermal motion. 
The calculated dependences of the relaxation rate (I/T2~) on 
~c for some values of ~, A and ~c/~k are shown in Plgure 
2. 
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Fig. 2: Dependence of relaxation rate 1/T2^ on the corre- 
lation time~(1-5); (6,7) - values ~f I/T^ in the 
rigid^lattice limit. I-%~7 - z~ =0 (I -z~=1~ I/2 
~g~Iz=0,1; 2 - k=3, ~M'~=0,1; 3 - k=l, ~ -= 
0,2~. 4 , 5 -  Z~/31/2=0,01~ 1/2 ( 4 -  k=l, T M&"~= 
0,2; 5 - k--3, ~T~1/2=0,2), ~k = ~c/~k �9 

On resonance the relaxation rate of z-magnetization I/T2e = 
I/T1z @I/T2z was calculated using Eqs.(15) and (17) and esti- 
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mation N~z)=15~.~~ For a~ =0,O1~o the parallel magnetization 
rate I/T~e=I/To~ was calculated~using Eq.(13) and following 
estimation 

The two terms I/Tls and I/T2s ( or 1/Tio and I/T2n for & ~O) 
have different T~ dependences. Therefore, either~I/T1~(~ 
(fast motion) or ~/T2s(o ) (slow motion) is a leading ~'for 
the different values of~'~. Let us first analyse the on-res- 
onamce case. In the rigid lattice limit (~c-~Oo) T1z-~ 
and we obtain, using Eqs.(4) and (6), 

Mz(t) = Mz(O) (1 - t2 /2  ~ z ) ~ 4 / 1 8  2 +...) 

and we can estimate the relaxation rate: 

(1/T2z) ~ = ~2 (M~z) /2 ) l / 2 /18  . 

Prom this estimation one can conclude that the slow motion 
effects on the value of T2z if 

~c < (T2z)~ ~ 181(~2(M~ z) /2)1/2)  " 

In increase the thermal motion intensity (~ decreases) the 
I/T2z decreases, but I/TI z increases and wil~ overcome I/T2z 
for ~C c < ~c- By comparlng Eq.(15) and Eq.(16), we get 

Tc, = 6 (2~2k )1 /2 / (~  ( ~ z ) ) ~ / 2 )  

Off resonance the ~C c dependences of 1/TI~ and 1/T2~ have the 
same form as I/T1z and 1~T2z for ~c&~ I~ but for "~cA > I 
and in the slow motion and rigid lattice limits the relaxati- 
on rate I/T2o is decreased by resonance offset. Thus, the ma- 
ximum at h~c[ k=31/2 will appear in the ~Cc dependence of I/ 
T2o. One cam'see that the both values, I/T~o and I/T~z , depe- 
nd on the extent of correlated motion ~= TiT~k. To r~nd k in 
the case of & =0 we must calculate ~0). B~t for A ~0, when 
the additional maximum of I/T2o occurs at Tc=k/~ , this di- 
fficulties can be avoided: knowing the B and the values of 
~c for different temperatures, one may obtain k from temper- 
ature dependence of T2e. 
~REV eight-pulse sequence (HAEBERLEN, 1976) which is less se- 
sitive on pulse imperfections, cam be more convenient to stu- 
dy this effect. The ~LREV-8 cycle consists of two subcycles: 
The first is the WAHUHA cycle, the second is again a WAHUHA, 
but the Px and P-x pulses are interchanged. Therefore, the 
spin-lattice relaxation rates have the same values as it is 
in a WAHUHA sequence. 
The effect considered above may be masked by chemical shift 
dispersion in powders, polimers and other compounds. To supr- 
ess the chemical shift DYBOWSKI and PE~BLETON, 1979 proposed 
to add the 180 ~ converting pulse in the ~REV-8 cycle ( the 17 
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-pulse DNCP sequence~. The 180 ~ pulse leads to reversing of 
the resonance offset sign with the period 24T. Taking into 
account this fact we obtained that for 24~& ~ I the chemical 
shift is not eliminated. When the averaging condition 24~A<< 
I is fulfiled, the relaxation is the same as for & =0. 
The chemical shift anisotropy may be supressed by additional 
spinning a sample about an axis tiltedby the emagic angle" 
54o44 ' to the MQ (LIPPMAA et al., 1977). However, in this ca- 
se the averaged over spinning part of F(t) is not equal to 
zero and averaging resonance offset is preservedro~he partial 
averaging of the dipolar interaction decreases M~ Bmt the 
form of the ~ c dependence of the relaxation rate I/T2o is 
preserved. 
In conclusion, we note that changing the pulse cycles, one 
can change the number of spins in the effective interaction, 
i.e. one may, in principle,study the correlation of thermal 
motion of various number of atoms. 
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