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The Possibility of Studying Thermal Motion Correlation
by Multiple Pulse NMR
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SUMMARY

We present the results of a calculetion of the spin-lattice
and spin-spin relaxation for dipolar solid when it is irradi-
ated by the WAHUHA and MREV-8 pulse sequences. The spin-spin
relaxation rate which is determined by the second-order dipo-
lar interaction term of the average Hamiltonian depends on
thermal motion of four atoms. It has been shown that frem the
temperature dependence of this relaxation rate the degree of
correlated atomic motion can be estimated.

INTRODUCTION

Since the development of multiple pulse NMR for high reso-
lution in solids, considerable efforts have been made to stu~-
dy the spin-lattice relexationin these experiments (HAEBERLEN
and WAUGH, 1969, GRUNDER, 1974, VEGA and VAUGHAN, 1978). The
essential features of this relaxation are similar to spin-la-
ttice relaxation in the roteting frame (T1p-relaxation). Ho-
wever, for the pulse rf irradiation, the initial magnetizati-
on decays even in the rigid lattice case becouse of the spin-
spin relaxation process, described by the high order terms of
the average Hamiltonian (HAEBERLEN, 1976). In recent years,
it has been demonstrated that here we have to deal with heat-
ing of spin system by quanta h{ln (=27 /t;, to- the cycle
time of the rf sequence), accomplished by 31mu1%aneous flip
of two, three and more spins ("resonance processes™) (IVANOV
et al.,1978), If we have a train of rf pulses all pointing in
the same direction in the rotating freme (a pulsed vergion of
the spin locking experiment) the average Hamiltonian HS is
not equal to zero, In this case we have obtained that resona-
nce processes are notgensitive to slow thermal motions (ZOBOV
and PONOMARENKO, 1978)._In this paper we analyse the line na-
rrowing segquences with Hy=0. Now the heating of spin system
by resonance processes depends on thermal motions of the
gpins participated in the absorpiion of quanta hQln. Hence,
it is possible, in principle, to study the degree of correlated
motion of these spins.

THEORETICAL

The spin system in strong magnetic field'fhé we shall consi-
der is irradiated by the WAHUHA sequence (see Figure 1) with
& resonance offset A<<1/T2. In the toggling frame of referen-

* Presented at the 22nd Microsymposium, “Characterization of Structure and Dynamics of Macromolecular
Systems by NMR Methods”, Prague, CSSR, July 20-23, 1981

0170-0839/81/0005/0347/$01.60



348

%07 90y 907, 904
a

Tl T 2T T 7T t

-

20, 120, 120°, 1207,
b

|7 2T | Tl T ¢
°Fw
: l' ¢
0
1} T |27 4T 5T

Fig. 1: Pour-pulse sequence WAHUHA.

ce (HAEBERLEN, 1976) the Hamiltonian of the system becomes
time dependent. In order to simplify the description of this
dependence, it is convenient 1o replace the 90°-pulses along
+X,+y axes of the rotating frame by the train of 120°-pulses
along the (111) and (717} directions of this frame, and to go
into & frame (tilted frame) with the Z axis along the (111)
direction. Thus, in the tilted frame the Hamiltonian of the
gpin system under consideration is

al(t) = BH, () + nH, (t) + nwl, , (1)

where u)=A/31/2, ﬁu(t) is the time-dependent part of the res-
onance offset Hamiltonian,

B, (t) =w/2'/2(1 exp{if(£)25/3} + I_exp{~i£(+)23/3} ), (2)

ﬁd(t) is the secular dipolar interaction,

Hy(t) = 3 veexp{if(t)§ 233} , (3)
S=+1,42
19 /0% +2_
vtloy2 iz’j By ()IgT,g s VHEa1/2 i%:j by (LT, 5

The coefficients bij(t)=1/2xiﬁﬂ1-3003291»}/rg- are dependent
on the lattice motion via r;: and 6;4; pe%iodié function of
time f(t) is shown on Fig. 19,

The equations of motion for No=My, M =My+ly (where My; My

and My are the magnetizations alo s Y and Z axes of tilted
frame, respectively) were derived {ZOBOV and PONOMARENKO, 1979)
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by projection operator method:

aM_(t) t ,
e i - N e—-iw(pt-qt’) ' '
” 1pw (1) q ?_‘,H &%qu,t Ye M (£)atr, (4)
where -
R (t,t) = X Rl(,gn),(t,t') , (58)
(2) n=1
Rpq (10t = . ,
B,(t),I B.(t*),I
- 5-26. exp{i'z'%r(f(t)sw f(t')s')}<[ a l{*"}tff ‘ Q—D, (5b)
(2n) o “PP
Roq (t,t') =

t t

2n-3 0
> (atg..d dth_zexp{i@g‘§ S X 2By (1), 1)
6 eesss' t! !

SvC1 5y & 2n-2 G,
a-B[3 '(t,),..., 1-D) [B (tan‘g),[Bd(t‘),Iq]...-_\)’(50)
P is the projection operator,
. KI _AS>
PA = E?;R'—“’" I,
Y I“PIP>

X

{ov>= Sp{e..y/8p (1}

Bg(t) VGéxp{ﬂSOJt} + V’zsexp{-izﬁout} ,

1/2

B (t) = B3() + w/2'/Pr exp{iSwiY .

The line over Ryn,{(t,%t') means averaging over thermal motion.
The fipgh term B9 the expansion in small quantity (7 /Tp )J¢<1
(5), Rgg (t),contains a fast oscillation with the perios 6T o
It is the leading term in the fast motion case (T X Tp, T,
igs the time of thermal motions correlation). In thé rigid la-
ttice and in the slow motion case (T, >Tp) the leading term
is onme with n=3, in which the fast oséillations vanish ("re-
sonance texrm"). The expression for this term was derived from
(50 ?y integration by parts and is (Z0BOV and PONOMARENKO,
1979

vy o et 2 .
RE (4,81 == T7/(18) <[ree), T_J1[R(E1), T P/KT (6)

I
-p7p” ?
where

P(t) = [BY() - B7(+),[B}(), B3(©)]]) (M
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(at t=0, using the notation of HAEBERLEN, 1976 we have
¢2F(0)/18 = H§2) ). Using Eq.(5) and regrouping the operato-
rs in F(t) as %ollow

Q+1(t)=3[V+1 ,[V+1,V"1]] +3[V'2,[V+1,V+2]] +3[V+1 ,[V-Z,V+2]'] ,
Q+2(t)=3[v*2,[v+1,v'1]] +3[V+2,[V+2,V-2]] +3[V-1,[V+2,V+1]] ,

Q3 ($)=Q%t)=0 , Q™ (t)=3lv*1 1, v*?]] ,
we have 4

F(t) = Y, Qm(t)exp{im(.ut} + C.C. , (8)
m=1
Now we must carry out the average over thermal motion. Assum-

ing the usual exponential correlation function,corresponding
10 & random Markoff process, we have

1 2 L
by (E)b 5 (ET) =by, exp{-lt-t'\/c } . (9)

J

. =(2) +(6)
That is enough for calculation of R . However, in R
there are products of six coefficiehts bi.(t), for exaﬁ%le in
the form of d

bij(f7bjk(t)bkl(t)bij(t'Tbjk(t')bkl(t') =g

t
11 (8t
To calculate g%- we will need to know how by; transforms un-
der thermal mo igﬁ of atoms or molecules. Let as congider for
simplicity a random Markoff procesgs: thermal motion results in
jumps of bjs to b}y so that Ei-E-j =0, and the mean time bet-
ween consecative aamps is T,. ie% ug consider two limiting ca~
ges:

1). Completely uncorrelated motion, i.e. by:, b and b4
change quite independently. Then J J
(£,t')= v2.b2 b2 3lt-t 1]/ (9a)
815%1 (tst")= 1y by b exp{-3 1t~ T} . a
2). Completely correlated motion. Then
IR DR b§3b§kb§1exp{-\t-t'li'tc} ) (9b)

Eqs. (9) have a simple structure: the thermal motion results
in appearance of exponent at "rigid" term b§jb§kb§1. Extend-
ing this property on more complicated expressions, we assume
that

@), I_JTQTHE), I ] /CT_ T >=- $P) (m)exp{-k-t M}, (10)
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where
(p) — m -m
Mg (m)=-¢([Q7,I__][Q ,Ip]>/<1_p1p> .

Ty changes from T, to T,/3 depending on the extent of the
correlated motion.,

RESULTS AND DISCUSSION
Using Eqs.(4)-(10), we obtain in the usual way

an, (+) .
= = -1prp(t) - Mp(t)/!l‘p R (12)

where 1/T =1/T, + 1/T, . The relaxation terms with the decay
constantspTﬁB dRa T1p $ obtained from the terms of Eq.(4)
Pq q

containing and Rp » respectively. Thus,
T 4
r G 1+ (WmT, ) 18 *
2 2
/1, = V3, T/ T, Mp= 3L(I+1) 20 b, . (14)
J

Now suppose the resonance offset and therefore,corresponding
magnetic field are equal to zero. In this case the projections
of magnetizations on the toggling frame axes relax independen-~
tly (ZOBOV, 1979). Therefore, it is convenient to return to
the o0ld untilted frame. Following the outlined procedure of
calculation, we obtained

P ) 2
/1, = thg¥t /18° (15)
where s = x,y and z,
2y 12
e R - IR ol (16

8 =z
Hy = 2 by5(3Tg51g5 = T;I4)
idj

The relaxation terms of second order have been considered in
(VEGA and VAUGHAN, 1978). The authors have obtained at T »7T

1/Tyg= /Ty = 2/9 My x2/ T, /2= 5/9 MyT?/e o (A7)

Thus, on resonance the x,y and z directions of the toggling
freme are "principal axes" of relaxation (VEGA and VAUGHAN,

1978).
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Off resonance there is the effective field Herp=W/¥ in the
toggling frame. This field mixes the x,y and z magnetizations
during the relaxation process and, for a sufficiently large
resonance offset (A Tog> 1), the parallel and perpendicular
to the effective field magnetizations relax independently
with time constants Ty, Tyq. From Eq.(13) we see that T, and
T41 have the same orders v} magnitude and the similar depend-
efices of parameters. Since M,1 decay and oscillate but M, de-
cays only, T,q1 gives & line Width of & multiple-pulse line-
narrowing experiment. In real semples the decay of My, results
from spin-lattice interaction, whereas the decay of the osci-
llations (M;1) does not necassarily. For example, the chemic-
al ghift dispersion msekes contribution to rate of this decay.
Therefore T, may be convenient to study of thermal motion,
The calculated dependences of the relaxation rate (1/Tsg) on
Te for some values of r, & and ’l'c/ Ty are shown in Pigure

2
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Pig. 2: Dependence of relaxation rate 1/T2 on the corre-
lation timeT(1-5); (6,7) - values<8f 1/7,, in the
rigig lattice limit. 1-3,6,7 - 4 =0 (1 -°R=1, 4,5
T M1/2=0,1; 2 - k=3, TH) = =1, T, £
0,25. 4,5 - A/31/220,01°M}/2" (4 - k=1, T MY/*=
0,2; 5=~ k=3, TM%/2=092)’ = Tc/tk'

On resonance the relaxation rate of z-magnetization 1/Tpe =
1/T1Z M/TZz was calculated using Egs.(15) and (17) and esti-
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mation méz)=1smg. For w =0,01M, the parallel magnetization
rate 1/T3¢=1/T, was calculated using Eq.(13) and following
estimation

u{Ol/2 = u{® (+2) = u{® (24) = 31

The two terms 1/T1g and 1/Tpg ( or 1/Tqp and 1/T2p for A #£0)
have different T,. dependences. Therefoge, either” 1/T s(p)
(fast motion) or ?/T2s§p) (slow motion) is a leading 1888 for
the different values of” .. Let us first analyse the on-res-
onance case. In the rigid lattice limit (T, 00 ) Tq,— oo
and we obtain, using Eqs.(4) and (6),

M (t) = M,(0) (1-19/2 MéZ)fz:4/182 Fees)

and we can estimate the relaxation rate:

<«

(171, ) =x2wt®) )28
2z 6

From this estimation one can conclude that the slow motion
effects on the value of Tzz if

T, < (D)) ~ 18/(TRmB) 12)1/2)

In increase the thermal motion intensity (T, decreases) the
1/T2g decreases, but 1/T,, increages and will overcome 1/Ts,
for T, < Tg. By comparing Eq.(15) and Eq.(16), we get

T, = 6(2uy1) 2/ (T mfP)) 2

Off resonance the T, dependences of 1/Tqp and 1/T2p have the
seme form as 1/Tqz and 1/Tp, for T,A < 1, but for "Tea > 1
and in the slow motion and rigid la%tice limits the relaxati-
on rate 1/Tp, is dﬁcreased by resonance offset. Thus, the ma-
ximum at A7,/ k=31/2 will appear in the <. dependence of 1/
Too. One can see that the both velues, 1/Tp, and 1/T5,, depe-
nd on the extent of correlated motio §= TC?Q:k. To §1nd k in
the case of A =0 we must calculate MOJ, Blit for & #0, when
the additional maximum of 1/Tpo occurs at g=k/w , this di-
fficulties can be avoided: knowing the & anﬁ the values of
te for different temperatures, one may obtain k from temper-
ature dependence of T2e.

MREV eight-pulse sequence (HAEBERLEN, 1976) which is less se-
gitive on pulse imperfections, can be more convenient to stu-
dy this effect. The MREV-8 cycle consists of two subcycles:
The first is the WAHUHA cycle, the second is again g WAHUHA,
but the Py and P.x pulses are interchanged. Therefore, the
spin-lattice relaxation rates have the same values as 1t is
in a WAHUHA sequence.

The effect considered above may be masked by chemical shift
dispersion in powders, polimers and other compounds. To supr-
ess the chemical shift DYBOWSKI and PEMBLETON, 1979 proposed
to add the 180° converting pulse in the MREV-8 cycle ( the 17
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-pulge DNCP sequence). The 180° pulse leads to reversing of
the resonasnce offset sign with the period 247 . Taking into
account this fact we obtained that for 24taA 5 1 the chemical
shift is not eliminated. When the averaging condition 24vA«
1 is fulfiled, the relaxation is the same as for & =0,

The chemical shift anisotropy may be supressed by additional
spinning a sample about an axis tilted by the ®magic angle"
54°44' to the H, (LIPPMAA et al., 1977). However, in this ca-
se the averaged over spinning part of F(t) is not equal to
zero and averaging resonance offget is preserved e partial
averaging of the dipolar interaction decreases M ut the
form of the T dependence of the relaxmtion rate 1/T20 ig
preserved.

In conclusion, we note that changing the pulse cycles, one
can change the number of spins in the effective interaction,
i.e. one may, in principle,study the correlation of thermal
motion of various number of atoms.
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